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The thermal conductivity of dense and porous yttria-stabilized zirconia (YSZ) ceramics has
been measured as a function of temperature in the range 25 to 1000 ◦C. The dense
specimens were either single crystal (8 mol% YSZ) or sintered polycrystalline (3 mol% and
8 mol% YSZ). The porous specimens (3 mol% YSZ) were prepared using the “fugitive”
polymer method, where different amounts of polymer spheres (of two different average
sizes) were included in the starting powders before sintering. This method yielded
materials with uniformly distributed porosities with a tight pore-size distributions. A theory
has been developed to describe the thermal conductivity of dense YSZ as a function of
temperature. This theory considers the reduction in the intrinsic thermal conductivity due
scattering of phonons by point defects (oxygen vacancies and solute) and by the
“hopping” of oxygen vacancies. It also considers an increase in the effective thermal
conductivity at high temperatures due to radiation. This theory captures the essential
features of the observed thermal conductivity. The Maxwell theory has been used to
analyze the thermal conductivity of the porous materials. An adequate agreement was
found between the theory and experiment. C© 2001 Kluwer Academic Publishers

1. Introduction
Zirconia (ZrO2) has one of the lowest thermal conduc-
tivities in a ceramic, and is, therefore, widely used as
thermal insulator at elevated temperatures [1]. One such
application of yttria (Y2O3)-stabilized zirconia (YSZ)
is thermal barrier coatings (TBCs) which are used to
protect and insulate hot-section metal components in
advanced gas-turbine (aircraft and power generation)
and diesel engines (see e.g. review article by Jones [2]
and references therein). The use of TBCs can result in
a temperature reduction of as much as 200 ◦C at the
metal surface, thereby improving the durability of the
metal component and enhancing the engine power-to-
weight ratio [3–5]. TBCs, which range in thicknesses
from 200–500 µm for gas-turbine engines [5] to 2 mm
for diesel engines [6], are deposited onto metallic sub-
strates by the air plasma spray (APS) method. Electron-
beam physical vapor deposition (EB-PVD) method is
also used, but for relatively thinner (125 to 200 µm),
high-performance TBCs [5]. APS coatings contain sig-
nificant amounts of microstructural defects such as
cracks, both parallel (at splats boundaries) and nor-
mal to the metal/ceramic interface, and also pores [3].
These defects are deliberately engineered into TBCs, as
they impart the system with the much desired quality
of strain tolerance, thereby mitigating the stresses due
to the thermal-expansion mismatch between the metal

and the ceramic [3]. Furthermore, these defects help
reduce the thermal conductivity of the TBCs [7].

There have been many studies aimed at understand-
ing the effects of these microstructural defects, porosity
in particular, on the thermal conductivity of APS TBCs
[7–9]. These studies include thermal conductivity mea-
surements, porosity characterization, and modeling the
effect porosity has on thermal conductivity. However,
accurate characterization of the porosity in production
coatings is very difficult. For example, narrow cracks
parallel to the metal/ceramic interface substantially
reduce the thermal conductivity, but ordinary porosity
measurement methods, such as mercury porosimetry,
do not probe these extremely narrow channels. Re-
cently, Dorvaux et al. [9] have used image analysis in
an attempt to characterize the porosity more accurately.
However, a fundamental study of effect of porosity
on the thermal conductivity of YSZ is lacking. Also,
with a few exceptions, very little effort has gone into
the understanding and analysis of the mechanisms
of lattice thermal conductivity and radiation in dense
YSZ [10–14].

The first objective of this work was to analyze the
lattice thermal conductivity of dense YSZ in terms of
the various resistive mechanisms. The second objective
of this work was to study the effect of porosity on the
thermal conductivity of YSZ, where the deliberately
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introduced porosity is well-controlled and can be accu-
rately characterized.

2. Experimental procedure
YSZ containing 3 mol% yttria (5.2 wt%) was the
primary composition studied. The fugitive-polymer
method [15] was used to introduce controlled, spheri-
cal porosity in these specimens during sintering. Sub-
micron powder (average particle diameter 0.3 µm and
average crystallite size 24 nm) of 3 mol% YSZ were
obtained commercially (TZ-3Y, Tosoh Corp., Bound
Brook, NJ, USA). A total of 5 different powder batches
were prepared by mixing the YSZ powders with poly-
mer spheres (Bangs Laboratories Inc., Fishers, IN,
USA) of two different sizes (5.4 and 15.0 µm aver-
age diameters) in various volume fractions. Individual
powder batches were blended in polyethylene bottles by
wet tumbling (without any media) in methanol for 24 h,
and each of these slurries were then stirred while dry-
ing. Individual pellets (25 mm diameter × 5 mm thick-
ness) were fabricated by uniaxial pressing of the indi-
vidual powders batches at a pressure of 50 MPa in a
steel die, followed by wet-bag cold-isostatic pressing
at 350 MPa. The pressed pellets were then calcined at
1000 ◦C for 24 h to burnout the polymer spheres, leav-
ing only pores behind, followed by sintering at 1600 ◦C
for 1 h. The same method was also used to fabricate con-
trol, dense (>99.9 %) specimens using only as-received
YSZ powder without the added polymer spheres.

YSZ containing 8 mol% yttria (13.4 wt%) was used
to study the effect of composition on thermal conduc-
tivity. Only dense specimens of that composition were
fabricated from a commercially available powder (av-
erage particle diameter 0.3 µm and average crystal-
lite size 20 nm) of 8 mol% YSZ (TZ-8Y, Tosoh Corp.,
Bound Brook, NJ, USA), using the above procedure. In
order to study the effect of grain boundaries on the ther-
mal conductivity, single crystal specimens of 8 mol%
YSZ were obtained commercially (Accumet Materials
Co., Ossining, NY, USA). Note that 3 mol% YSZ con-
tains a metastable mixture of monoclinic, tetragonal
and cubic phases of ZrO2, which cannot be prepared in
the single crystal form. Thus, a total of 8 types of spec-
imens were studied: 5 porous 3 mol% YSZ, 1 dense
3 mol% YSZ, 1 dense 8 mol% YSZ and 1 single-crystal
8 mol% YSZ.

The density (ρ) of each type of specimen was mea-
sured using the Archimedes principle, with water as
the immersing medium [16]. Crossection of each type
of specimen was also ground and polished to a 1 µm
final finish using routine ceramographic methods. Pol-
ished cross-sections of the control, dense specimens
were thermally etched at 1400 ◦C for 0.1 h, and their
microstructure observed in a scanning electron mi-
croscope (SEM, Philips Electron Optics, The Nether-
lands). These SEM images were scanned into a com-
puter, and the average grain sizes of these specimens
were measured using an image analysis software (mi-
croGOP 2000, ContextVision, Linköping, Sweden).
The average grain size for both compositions was found
to be 1.4 µm.

The polished cross-sections of the porous specimens
were observed in an optical microscope (METAPHOT,
Nikon, Japan). The optical images were recorded, and
were also scanned into a computer. The same Con-
textVision image analysis software was used to mea-
sure the pore sizes and the pore volume fractions. About
300 pores per specimen were measured to obtain the av-
erage pore size. At least 15 representative micrographs
(at 500× or 1500× magnification) per specimen were
used to obtain pore volume fractions. A stereological
factor of 1.27 was used to convert the raw measure-
ments of the pore diameter and the volume fraction
to actual values, assuming spherical pores of uniform
distribution. This factor accounts for the fact that a ran-
dom cross-section plane does not, in general, intersect
the pores on the diametrical plane.

For each of the aforementioned 8 types of speci-
mens, a set of samples was machined. Each set con-
sisted of a plate sample (12.7 × 12.7 × 1.27 mm) and a
disk sample (5.8 mm diameter × 1.52 mm thickness).
Thermal diffusivity (κ) of each of the 8 plate samples
was measured in the temperature range 23 to 1000 ◦C
during heating (in vacuum) using the laser-flash tech-
nique [17]. Because of the translucency of the speci-
mens to the laser, the front face and the back face of
the plate specimens were coated with a thin layer of sil-
icon carbide (SiC) and carbon, respectively. Although
the carbon coating had no effect on the measurements,
appropriate corrections were made in the thermal dif-
fusivity calculations to account for the presence of the
silicon carbide layer [18]. Specific heat (c) of each of
the 8 disk samples was measured, also in the same tem-
perature range during heating, using differential scan-
ning calorimetry (single-crystal alumina reference ma-
terial) [17]. The thermal property measurements were
performed at the Thermophysical Properties Research
Laboratories Inc. (West Lafayette, IN, USA). At a given
temperature (T ), the thermal conductivity (k) was deter-
mined using the relation k = κρc, where ρ is the density.
The thermal conductivity values are accurate within
4%. Some measurements were also performed during
cooling. The difference between the respective heating
and cooling values was found to be within experimental
error.

3. Theoretical analysis
3.1. Dense materials
First we analyze the thermal conductivity of dense YSZ.
The total thermal conduction in YSZ can be thought as
the sum of contributions from phonons and photons
(radiation) [19]:

k = kP + kR. (1)

The phonon thermal conductivity of a pure solid, in the
absence of any extrinsic scattering by extended defects
(grain boundaries, pores) or point defects (vacancies,
solute atoms), is simply [19]:

kP = kIntrinsic = ψ

T
, (2a)
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where T is the absolute temperature of interest and ψ

is a constant and is given by [19]:

ψ = 3

2
γ 2

[
µν2

ωD N−2/3

]
, (2b)

with γ being the Grüneisen parameter which is a mea-
sure of the anharmonicity, µ being the shear mod-
ulus, ν being the transverse phonon velocity (which
is (µ/ρ)1/2 with ρ being the density), ωD being the
Debye frequency, and N being the number of atoms
in the molecular-formula unit of the solid. Many of
these properties for pure zirconia are not known be-
cause single-crystal or polycrystalline unstabilized zir-
conia specimens cannot be fabricated. Thus, the value
of ψ zirconia has been estimated to vary between 1,700
and 2,800 Wm−1 [12, 13], and can be treated as an
adjustable parameter. (Note that the value of ψ for
single-crystal titania (TiO2) has been determined to be
2,800 Wm−1 [20].)

With the addition of yttria, the phonons can be scat-
tered by the oxygen vacancies that are created. Thus,
the phonon conductivity now becomes [21]:

kP =
[
ψ

T

]
(ωO/ωM) tan−1(ωM/ωO) (3a)

with

(ωO/ωM)2 = χT

{C(1 − C)} , (3b)

where ωM is the phonon frequency corresponding to the
maximum of the acoustic branch of the phonon spec-
trum, ωO is that phonon frequency where the intrinsic
mean free path is equal to that due to solute atoms,
C is the fractional molar concentration of yttria, and
χ is a constant with a value of 9.82 × 10−3 for YSZ
[13]. Since the grain size of the YSZ in question is
fairly large (1.4 µm), we do not expect significant re-
duction by phonon scattering from grain boundaries
[13]. This assumption will be validated experimentally
in Section 4.

The phonon conductivity can be further reduced by
the scattering of phonons due to the jumping of oxygen
vacancies between neighboring sites in the lattice. This
mechanism is dominant at temperature below 100 ◦C
and the reduction in thermal conductivity takes the form
[13]:

�kHopping = kIntrinsicξ

T
= ψξ

T 2
, (4)

where ξ is a constant, which can be deduced from
measurements of the thermal conductivity at low tem-
peratures assuming that the same mechanism operates
above room temperatures. Thus, from measurements
on YSZ one expects ξ to lie between 40 and 50 K,
and can be treated as an adjustable parameter [13]. The
reduction given by Equation 4 is due to scattering of
phonons at low frequencies, and is independent of the
reduction due to point defects, which scatter phonons
in a different, high frequency range.

The phonon conductivity, considering the three scat-
tering mechanisms of (i) intrinsic scattering due to the
interaction between phonons owing to lattice anhar-
monicity, (ii) scattering due to oxygen vacancies, and
(iii) scattering due to oxygen vacancy jumping, is then
given by [22]:

kP =
{[

ψ

T

]
(ωO/ωM) tan−1(ωO/ωM)

}
−

[
ψξ

T 2

]
. (5)

Heat can also be transferred by radiation or by pho-
tons, a mechanism that is dominant at elevated temper-
atures. However, radiation is effective only in a narrow
window of frequency. Below the absorption edge fA,
radiation is not transmitted. Similarly, above a very high
frequency fO, radiation is strongly scattered. The effec-
tive thermal conductivity due to radiation is then given
by [19]:

kR =
[

4σεLn2T 3

25.976

]
{J4(�O/T ) − J4(�A/T )}, (6a)

Figure 1 (A) Representative optical micrograph showing the uniform
distribution of the porosity. (B) A close-up scanning electron micrograph
showing the spherical shape of the pores. 3 mol% YSZ specimen with
9.9% porosity and average pore size 14.9 µm.
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where the J4 function is defined as [23]:

J4(�/T ) =
∫ (�/T )

0
{(x4ex )/(ex − 1)2} dx, (6b)

and σ is the Stefan-Boltzmann constant, ε is the ef-
fective emissivity (recall that the plate specimen is
bounded by silicon carbide on one face and carbon on
the other), L is the thickness of the plate across which

Figure 2 Histograms showing pore size distributions in the porous YSZ specimens.

radiation is occurring (recall that L = 1.27 mm in our
experiments), and n is the refractive index (= 2.7 for
YSZ [24]). The variables �O = h fO/kB and �A =
h fA/kB, where h and kB are the Planck and Boltzmann
constants, respectively. For very high frequencies �O
approaches infinity, resulting in J4(�O/T ) = 25.976
[23]. Since the absorption edge, fA, for YSZ occurs
at 6 × 1013 Hz [24], �A is 2900 K. The function J4 has
been tabulated [23], being the same as it occur in the

3006



Debye theory of specific heat. The effective emissivity
ε is not well known. In our case it is the emissivity be-
tween zirconia and silicon carbide, and is treated as an
adjustable parameter.

Once again, the total thermal conductivity is given
by the sum of the phonon and the photon contributions
(Equation 1).

3.2. Porous materials
There is an extensive but scattered literature dealing
with the effect of inclusions and pores on the electrical
and thermal conductivities and dielectric constant. For
thermal conductivity there is a valuable discussion in a
book by Parrott and Stuckes [25]. They point out that
the overall conductivity cannot exceed the volume av-
erage of the components, and cannot be above the value
obtained from the volume average of the resistivities.
In the case of pores in solids the second limit is not
useful, since pores have almost infinite resistivity.

First, we consider the reduction in the phonon ther-
mal conductivity (kP) due to porosity. An early theo-
retical treatment was given by Maxwell [26], where he
calculated the current lines around a spherical inclusion
in a cube of unit volume for inclusion volume fraction
of φ. He showed that [26]:

kMixture

kP
= [1 + 2δ − 2φ(δ − 1)]

[1 + 2δ + φ(δ − 1)]
, (7)

where kMixture is the effective conductivity of the mix-
ture, kP is the phonon conductivity of the continuous
phase, δ = kP/kInclusion, and kInclusion is the conductivity
of the inclusion. In the case of pores δ → ∞, and one
obtains for the phonon conductivity ratio:

kP(Porous)

kP(Dense)
≈ 1 − 3

2
φ. (8)

There are other approximations, including that by
one of us [27], where the spatial variation about the vol-
ume average of the conductivity is expressed in Fourier
components, as is the field, and the field components
are adjusted to minimize the rate of entropy produc-
tion. The resulting set of equations can be solved by
iteration. For pores, where kInclusion = 0, we have [27]:

kP(Porous)

kP(Dense)
= 1 − 4

3
φ. (9)

Equation 9 was previously used by us for the analysis
of the phonon conductivity of porous YSZ [28].

Now, we consider the reduction in the photon ther-
mal conductivity (kR) due to porosity. At elevated tem-
peratures, the presence of pores reduces the dielectric
constant (n2) of the material, which appears as a multi-
plicative factor in the expression for the radiative com-
ponent (kR; Equation 6). An additional reduction in kR
can occur due to pore-scattering. However, since the
average pore sizes (5 and 14 µm) of the materials stud-
ied here are much larger than the radiation wavelengths,
the scattering is expected to be negligible.

In an inhomogeneous medium, the effective value of
n2, and thus kR (Equation 6), is given by similar con-
siderations as the effective conductivity, since displace-
ment fields and current lines are governed by the same
equation. In the case of pores, for which n2

Inclusion = 1
and δ = n2

Dense, Maxwell’s expression (Equation 8), for
small φ, becomes [26]:

kR(Porous)

kR(Dense)
≈ 1 − 3

2
φ

n2
Dense − 1

n2
Dense + 1

2

. (10)

Note that this ratio is always smaller than the corre-
sponding ratio in Equation 8, by a factor of ≈0.81
for n2

Dense = 2.7 for YSZ. Similarly, for relation by
Klemens [27] (Equation 9), one obtains:

kR(Porous)

kR(Dense)
≈ 1 − φ

n2
Dense − 1

n2
Dense

[
1 + 1

3

n2
Dense − 1

n2
Dense

]
.

(11)
Once again, this ratio is smaller than that given by
Equation 9, here by a factor of ≈0.83.

Since the extra factors in Equations 10 and 11 for
radiation are expected to have a negligible effect, it is
expedient to use the following relation due to Maxwell
for the relative overall thermal conductivity of porous
materials (kporous = kP(Porous) + kR(Porous); Equation 1)
[26]:

kPorous

kDense
= 1 − 3

2
φ, (12)

or the one due to Klemens [27]:

kPorous

kDense
= 1 − 4

3
φ. (13)

Figure 3 Thermal conductivity of fully dense YSZ specimens as a func-
tion of temperature. Open symbols represent polycrystalline specimens
and filled dots (•) represent data for the 8 mol% YSZ single crystal
specimen. Error bars smaller than symbol size not shown. Solid lines
represent the theoretical fits (Equations 1–6) to the data.
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T ABL E I Characteristics of the 8 specimens used in this study

Specimen Average Pore Volume% Density
Composition Type Number Diameter (µm) Porosity (Mg/m3)

3 mol% YSZ Dense 1 - - 6.086
Porous 2 4.8 6.2 5.777

3 13.8 5.9 5.733
4 14.9 9.9 5.532
5 14.5 18.7 4.973
6 14.2 23.8 4.664

8 mol% YSZ Dense 7 - - 5.938
Single Crystal 8 - - 5.968

Figure 4 Thermal conductivity of porous 3 mol% YSZ specimens as a function of temperature. Error bars smaller than symbol size (except fully
dense specimen) not shown. Dashed line represents an empirical fit to the data for the fully-dense specimen. Solid lines represent theoretical fit
(Equation 12) to the data.
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to analyze the effect of porosity (φ) on the thermal
conductivity of YSZ.

4. Results and discussion
Fig. 1A and 1B show microstructure of a porous speci-
men at different magnifications. Note the near-spherical
shape of the pores and the uniform distribution of the
pores throughout the specimen. These features were ob-
served to be typical of all the porous specimens studied.
Fig. 2A through 2E show pore size distributions for the
5 porous specimens. Table I summarizes the character-
istics of the 8 specimens used in this study.

Fig. 3 shows the thermal conductivity as a function
of temperature for the dense specimens and the single
crystal specimen. For the dense 3 mol% YSZ speci-
men note the modest temperature dependence, which
is typical of zirconia ceramics. For the dense 8 mol%
YSZ specimen that independence is more pronounced,
with the thermal conductivity showing a slight increase
with temperature. Note the identical thermal conductiv-
ities for both single-crystal and polycrystalline 8 mol%
YSZ, confirming the lack of the effect of grain bound-
aries on the thermal conductivity in the temperature
range studied.

The solid lines in Fig. 3 represent predictions from
the theory described in Section 3 (Equations 1–6). The
following values for the adjustable parameters were
used to obtain a good fit: ψ = 2,700 Wm−1, ξ = 50 K,
and ε = 0.136. Once again, these values are reason-
able estimates, as independent measurement of these
parameters is an intractable task. Note the fit between
the theory and the experiment at the extremes of the
temperature range, and the discrepancy at intermediate
temperatures, which is more pronounced in the case of
3 mol% YSZ. The maximum discrepancy in the inter-
mediate temperatures is observed to occur near 650 ◦C
for 3 mol% YSZ. This is possibly due to the combina-
tion of an overestimation of phonon scattering (steeper
temperature dependence) and an underestimation of the
radiative component. However, since that fit appears to
be better in the case of 8 mol% YSZ and since the radia-
tive component is independent of the yttria concentra-
tion (Equation 6), it is argued that the discrepancy may
be due to a larger overestimation of the phonon scatter-
ing in the case of 3 mol% YSZ relative to 8 mol% YSZ.
In other words, there may be additional scattering cen-
ters or mechanisms, other than the compensating point
defects, in 3 mol% YSZ which have not been accounted
for. At this time it is not clear what those centers or
mechanisms may be.

In Fig. 3, also note that the theory captures the down-
turn observed in the low-temperature thermal conduc-
tivity data. That downturn in the theoretical curves is
due to the phonon-scattering by oxygen-vacancy hop-
ping (Equation 4). Note that the downturn occurs at a
lower temperature in 3 mol% YSZ relative to 8 mol%
YSZ. This is consistent with the fact that there are rel-
atively fewer oxygen vacancies in the 3 mol% YSZ
material.

Fig. 4A to 4D show the effect of porosity on the
thermal conductivity of 3 mol% YSZ. The dashed line

Figure 5 Thermal conductivity as a function of temperature for porous
3 mol% YSZ specimens with 2 different average pore sizes (4.8 and
13.8 µm) but the same porosity (∼6%).

represents an empirical fit through the data for the fully
dense material. The solid lines for the porous materi-
als are theoretical fits using the Maxwell [26] relation
(Equation 12). The baseline thermal conductivity for
the dense material (dashed line) was used as kDense in
Equation 12. There is an adequate agreement between
the theory and the experiment (within 8% overall). Re-
call that the error in the measurement was estimated
at about 5%. The Klemens [27] relation (Equation 13)
was also used to fit the experimental data (not shown
here), but it did not yield as good a fit (over 10% er-
ror overall). Note that the relation due to Klemens [27]
(Equation 13) assumes no correlation in the position of
the pores, while that due to Maxwell [26] (Equation 12)
assumes well separated pores. Since the pores in the
YSZ materials studied here were formed from solid
polymer spheres which cannot overlap, the Maxwell
[26] relation is expected to yield a better correlation
in analyzing the thermal conductivity data for porous
YSZ. Also, note that the porosity effect is expected
to be independent of the pores size (Equations 12 and
13), since the sizes of the pores are much larger than
the wavelength of the radiation and are not expected
to scatter radiation to a significant extent. This is con-
firmed in Fig. 5, which plots the thermal conductivity
data for YSZ specimens containing 2 different average
pores sizes (4.8 and 13.8 µm) but the same amount of
porosity (∼6%).

5. Summary
We have measured the thermal conductivity of dense
and porous yttria-stabilized zirconia (YSZ) ceramics
as a function of temperature in the range 25 to 1000 ◦C.
The dense specimens were either single crystal (8 mol%
YSZ) obtained commercially or in-house sintered poly-
crystalline (3 mol% and 8 mol% YSZ). The porous
specimens (3 mol% YSZ) were prepared using the
“fugitive” polymer method, where different amounts of

3009



polymer spheres (of two different average sizes) were
included in the starting powders before sintering. This
method yielded materials with uniformly distributed
porosities with a tight pore-size distributions. As re-
ported by others, the overall thermal conductivity of
YSZ is not a strong function of temperature. A theory
was developed to describe the thermal conductivity of
dense YSZ as a function of temperature. This theory
considers the reduction in the intrinsic thermal con-
ductivity due scattering of phonons by point defects
(oxygen vacancies and solute) and by the “hopping”
of oxygen vacancies. It also considers an increase in
the effective thermal conductivity at high temperatures
due to radiation. This theory was found to capture the
essential features of the observed thermal conductivity.
However, there was a poor agreement between theory
and experiment in the intermediate temperature range,
especially in the case of 3 mol% YSZ, the reason for
which is not clear at this time. The Maxwell theory was
used to analyze the thermal conductivity of the porous
materials, where an adequate agreement was found be-
tween theory and experiment.
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